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ABSTRACT
High-resolution stable isotope (δ18O and δ13C) sclerochronology of accretionary carbon-

ate bivalve shells can provide subannual environmental records useful for understanding 
intervals of extinction, which are commonly periods of rapid change and instability. Here, 
we present results from high-resolution serial sampling of Lahillia larseni bivalve shells 
across the Cretaceous-Paleogene boundary (KPB) on Seymour Island, Antarctica. These data 
highlight two intervals of anomalous δ18O and δ13C values that coincide with condensed fos-
sil last occurrences: one at the KPB and one at an apparent extinction event 150 k.y. earlier. 
We interpret these two intervals to represent periods of both climate warming, as indicated 
by lower δ18O, and seasonal anoxia or euxinia, as evidenced by anomalously low (−21.6‰ to 
−3.0‰ VPDB [Vienna Peedee belemnite]) δ13C values with high (2‰ to 19‰ in magnitude) 
seasonal variation. Low-oxygen conditions may have acted as a kill mechanism at the earlier 
extinction interval and possibly prolonged recovery from the KPB extinction.

INTRODUCTION
The Cretaceous-Paleogene (K-Pg) bound-

ary (KPB) is defined by the presence of aster-
oid ejecta (Molina et al., 2006) resulting from 
the Chicxulub bolide impact (offshore Yucatán, 
Mexico), which was a major contributor to the 
K-Pg mass extinction (Schulte et al., 2010). The 
environmental effects of this collision may have 
been exacerbated by the ongoing eruption of 
the Deccan Traps large igneous province (India) 
across the KPB (Archibald et al., 2010), though 
the relative timing of these two events remains 
in dispute (Schoene et al., 2019; Sprain et al., 
2019). Both phenomena could have significantly 
perturbed global atmospheric and oceanic condi-
tions across this time interval, albeit at different 
magnitudes and time scales. Subannual environ-
mental records can detail the seasonal variation 
inherent in climatic changes during this period 
of instability.

Seymour Island, Antarctica, is an important 
high-paleolatitude site for studying both secular 

temperature change and seasonal environmental 
variations. The polar response to global climate 
change in the Late Cretaceous is poorly under-
stood (Tabor et al., 2016), and the magnitude of 
seasonal temperature and productivity variations 
were likely large (Winder and Cloern, 2010). 
Recent studies on Seymour Island have found 
evidence for distinctive seasonal processes in 
this environment, including intermittent euxinia 
(Schoepfer et al., 2017) and seasonal fluxes of 
biogenic methane (Hall et al., 2018). The rela-
tively high sedimentation rate (10–20 cm/k.y.) at 
Seymour Island also allows the K-Pg interval to 
be studied at a high temporal resolution (Macel-
lari, 1988; Tobin et al., 2012).

The accretionary carbonate shells of bivalve 
mollusks precipitate in equilibrium with their 
environment, preserving subannual records of 
climate and other environmental conditions dur-
ing their life spans, which can be accessed via 
high-resolution serial sampling and stable iso-
tope (δ18O and δ13C) analysis (e.g., Ivany, 2012). 
In this study, we use this approach on aragonitic 
shells of Lahillia larseni, an infaunal bivalve 

from Seymour Island. We incorporate additional 
data (Petersen et al., 2016; Hall et al., 2018) 
to produce a high-resolution single-species re-
cord of subannual environmental signals across 
the KPB that contains evidence for intervals of 
seasonal shelf anoxia associated with faunal 
turnover.

GEOLOGIC SETTING
The López de Bertodano Formation on Sey-

mour Island (Fig. 1) comprises an expanded, 
highly fossiliferous succession of shallow ma-
rine sediments (Macellari, 1988; Olivero, 2012) 
that are Maastrichtian to Danian in age (Tobin 
et al., 2012). The paleoenvironment was a shal-
low marine shelf with water depths <200 m (Ma-
cellari, 1988) located at a latitude of 62°S dur-
ing the Late Cretaceous (Tobin et al., 2012). 
Though traditionally interpreted as an oxygen-
ated and open-marine shelf due to the presence 
of a fully marine fauna (e.g., Macellari, 1988; 
Crame et al., 2004), analyses of pyrite framboids 
and trace element enrichments provide evidence 
for conditions that fluctuated between oxic and 
euxinic at the sediment-water interface through-
out this interval (Schoepfer et al., 2017). The 
molluscan fossils of the López de Bertodano 
Formation are known to be well preserved and 
have successfully been used in a variety of iso-
topic studies aimed at reconstructing paleoenvi-
ronmental conditions during this interval (e.g., 
Tobin et al., 2012; Petersen et al., 2016; Witts 
et al., 2018; Hall et al., 2018).

METHODS
We collected 20 specimens of L. larseni 

from a measured stratigraphic section of units 
8–10 of the López de Bertodano Formation on *E-mail: rcmohr@crimson.ua.edu
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Seymour Island during field seasons from 2009 
to 2016 (Fig. 1) and analyzed them at the Uni-
versity of Alabama (UA; Tuscaloosa, Alabama, 
USA). Two smaller sets of specimens were col-
lected by William Zinsmeister and analyzed at 
the University of Michigan (UM; Ann Arbor, 
Michigan, USA): five specimens from a doctoral 
thesis (Dutton, 2003) and five newly analyzed 
(see the Supplemental Material1). All of the sam-
ples were placed in their stratigraphic context 
with respect to the well-defined KPB, which also 
allowed us to correlate our data with previous 
data collected from L. larseni shells (Petersen 
et al., 2016; Hall et al., 2018), an approach that 
is robust within 100 m of this boundary (Scho-
epfer et al., 2017). The combined data span a 
stratigraphic interval of 298 m, representing a 
period of ∼2.3 m.y., and present a record of en-
vironmental conditions and (minimum) seasonal 
variability across the KPB (Figs. 2–3).

Diagenesis was assessed by evaluating shell 
microstructure with scanning electron micros-
copy (Knoll et  al., 2016; Figs. S1–S4) and 
analyzing shell mineralogy and trace element 
concentration (see the Supplemental Material). 

High-resolution (subannual) serial sampling 
(>28 samples/cm; in total spanning 1–3 yr of 
growth) was conducted on 16 shells using a 
computerized micromill (Fig. 4; Figs. S5–S6), 
usually targeting toward the middle of each 
valve (see Table S1 in the Supplemental Mate-
rial). Low-resolution sampling (∼1–2 samples/
cm; in total spanning 5–15+ yr of growth) was 
conducted on 14 shells. Sample powders and 
isotopic standards were analyzed using standard 
methods at both UA and UM (see the Supple-
mental Material). Paleotemperatures were cal-
culated from δ18O values (Kim et al., 2007), 
assuming a −1.2‰ VSMOW (Vienna standard 
mean ocean water) seawater value for an ice-
free world (Shackleton and Kennett, 1975), with 
an applied correction for latitude (Zachos et al., 
1994).

RESULTS
The subannual ontogenetic δ13C profiles 

from our analyzed shells exhibited clear epi-
sodic patterns, with nearly all shells recording 
δ13C minima near the dark growth band separat-
ing each growth increment (Fig. 4). The shell 
δ13C patterns fell in two general types: most (10 
of 16) of the shells had δ13C variations <2.0‰ in 
magnitude and average values between −1.3‰ 
and 2.4‰ VPDB, but some ontogenetic profiles 
exhibited anomalously low δ13C values (as low 
as −21.6‰ VPDB) and large seasonal varia-
tions of as much as 7.7‰ in magnitude (profile 

UWBM-107343-A had a 19.1‰ seasonal range, 
but excluding a single measurement yielded a 
7.6‰ range). The cuspate nature of the δ13C 
records implies that the growth bands mark sea-
sonal growth terminations, as assumed previ-
ously (Moss et al., 2017). The subannual onto-
genetic δ18O profiles of L. larseni shells (Fig. S6) 
show little to no seasonal variation (maximum 
range, 2.3‰; median range, 0.9‰).

Our δ13C and δ18O data correlate well with 
previously published work (Petersen et al., 2016; 
Hall et al., 2018) where the data sets overlap 
(Fig. 2). A LOESS (locally estimated scatterplot 
smoothing) regression through the composite 
stratigraphic record (Fig. 2) reveals two intervals 
(intervals I and II) where δ13C values are lower 
than expected in a well-mixed ocean (Kroopnick, 
1985). These intervals also contain low δ18O 
values when compared to “background” values 
outside of these intervals. While comparative 
statistics are artificially controlled by the selec-
tion of interval bounds, Tukey-Kramer post hoc 
pairwise tests (on Kruskal-Wallis test results) 
for all analyses do show that the intervals are 
clearly distinct from each other and from the 
background for both δ13C and δ18O, with one 
exception (p = 0.21 for δ18O between interval I 
and background; p <10−6 for δ18O between inter-
vals I and II; p <10−9 for all other comparisons). 
The two intervals correspond with previously 
identified horizons of condensed fossil last oc-
currences (LOs), which may represent periods 
of increased extinction (Tobin, 2017). The first 
interval (interval I) occurs ∼67–48 m below the 
KPB (ca. 66.3–66.2 Ma) and is concurrent with 
the initiation of major Deccan Traps eruptions 
(Schoene et al., 2019; Sprain et al., 2019), while 
the second (interval II) is concurrent with the 
KPB (ca. 66.1–65.9 Ma).

DISCUSSION
Subannual δ18O and δ13C Records

Assuming a consistent seawater δ18O (δ18Ow) 
value, the best explanation for the minimal sea-
sonal δ18O variation in L. larseni shells at a high-
paleolatitude location is that the habitat is at 
water depths where the seasonal temperature 
variation is muted or absent (e.g., Ivany, 2012), 
likely the middle to outer shelf.

The low-variation (<2.0‰) δ13C profiles are 
consistent with the magnitude of δ13C variation 
in the dissolved inorganic carbon (DIC) pool 
expected as a result of seasonal productivity 
in a high-latitude environment (Barrera et al., 
1994). The seasonal pattern in the ontogenetic 
δ13C profiles suggests that these shells grew for 
a significant portion of the year despite largely 
invariant δ18O profiles.

The ontogenetic δ13C profiles with high-mag-
nitude variation and anomalously low δ13C values 
were similar to those previously reported from 
subannual sampling of a few L. larseni shells by 
Hall et al. (2018). They interpreted these profiles 

1Supplemental Material. Supplemental Figures 
S1–S9, Table S1, Tables S2–S4 as raw data in Excel 
file, and additional methodological text. Please visit 
https://doi​.org/10.1130/GEOL.S.12620630 to access 
the supplemental material, and contact editing@
geosociety.org with any questions.

Figure 1.  Simplified geological map of Seymour Island, Antarctica, after Schoepfer et al. (2017) 
and Montes et al. (2019), with black lines indicating stratigraphic sections. Shells sampled for 
this study were collected either along the stratigraphic section of Tobin et al. (2012), labeled 
“Tobin” (those analyzed at University of Alabama, USA), or from localities represented by purple 
dots (those analyzed at University of Michigan, USA). Shells sampled by Hall et al. (2018) are 
from stratigraphic sections labeled “Hall A” and “Hall B.” Fm.—Formation; Sst.—Sandstone.
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to record a seasonal contribution of 13C-depleted 
carbon to the bottom-water DIC pool via oxida-
tion products of biogenic methane, which we 
agree is the most likely explanation for anom-
alously low δ13C values in both data sets. The 
production of significantly 13C-depleted biogen-
ic methane (−50‰ to −110‰; Whiticar, 1999), 
known as methanogenesis, can occur in highly 
anoxic or euxinic environments, commonly as a 
response to a large influx of organic carbon (e.g., 
Zhang et al., 2008). The subsequent oxidation 
of the methane in less-reducing conditions re-
leases 13C-depleted carbon into the bottom-water 
DIC pool, where it is incorporated into bivalve 
shells. The large variation in δ13C values within 
a single growing season of L. larseni therefore 
suggests the presence of seasonally fluctuating 
redox conditions and seasonal fluxes of organic 
carbon, which may have been driven by the an-
nual bloom of primary producers or supply of 
terrestrial carbon from spring meltwater runoff.

Stratigraphic δ18O and δ13C Trends
The co-occurrence of lower δ18O and δ13C 

values in intervals I and II can be attributed to 
climate warming, which would have decreased 
δ18O values by directly increasing water temper-
atures. Warming can drive water-column strati-
fication and reduce oxygen solubility, leading 
to anoxic or euxinic bottom-water conditions 
and subsequent methanogenesis (Keeling et al., 
2010), resulting in decreased δ13C values as de-
scribed above. Alternatively, abrupt shallowing 
could increase the flux of low-δ18Ow continental 
water containing significant organic material, 
directly decreasing both δ18O and δ13C values, 

but there is no sedimentological support for fa-
cies variation in this section (Crame et al., 2004).

It is possible for fossil LOs to be condensed 
by facies changes or sedimentary hiatuses (e.g., 
Holland and Patzkowsky, 2015) instead of by 
increased extinction rates. Abrupt shallowing at 
either interval I or II could have provided both 
the facies change and possibly the sedimen-

tary hiatus (erosional) necessary to condense 
LOs. A regression coincident with interval I 
was proposed previously, but its recognition 
was largely based on a faunal shift (Macel-
lari, 1988) and was notably not recognized in 
later work (Crame et al., 2004). Tobin (2017) 
argued that a biological event was more likely, 
as no sedimentological changes indicative of 

Figure 2.  Stratigraphic 
plots of mean carbon or 
oxygen isotope values for 
each specimen of Lahillia 
larseni. Magnetostratig-
raphy is from Tobin et al. 
(2012), and age model is 
from Sprain et al. (2018). 
Blue circles represent 
data from L. larseni shells 
sampled in this study. 
Orange diamonds (Hall 
et  al., 2018) and green 
squares (Petersen et al., 
2016) represent previ-
ously published data 
from L. larseni shells. 
Solid symbols indicate 
shells sampled at high 
(subannual) ontogenetic 
resolution, and open 
symbols indicate shells 
sampled at low resolution. 
Horizontal range bars 
indicate total range of 
isotopic values recorded 
in each shell. Vertical error 

bars indicate stratigraphic uncertainty for each shell and are in most cases smaller than the symbol representing each data point. Pale yellow 
rectangles represent the durations of intervals I and II. LOESS (locally estimated scatterplot smoothing) curve (black line, span = 0.25) is fitted 
through the average values for each shell, with dashed lines indicating the window of error. K-Pg—Cretaceous-Paleogene boundary; VPDB—
Vienna Peedee belemnite; res—resolution.
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a facies change or hiatus were observed over 
the interval I duration. Given the lack of sedi-
mentological evidence for an abrupt facies 
change, we believe a period of increased ex-
tinction driven by euxinia and coincident with 
warming is the most likely explanation for the 
condensed LOs at interval I. Interestingly, the 
case for LOs to be condensed by a sedimen-
tary hiatus is much stronger at the KPB, which 
is located in the middle of a glauconitic sand 
layer. Considering the global context and pres-
ence of impact ejecta in this layer (Elliot et al., 
1994), a geologically abrupt extinction is still 
the best explanation for condensed fossil LOs 
at interval II.

The correlation of interval I with the onset 
of Deccan Traps volcanism (Schoene et al., 
2019; Sprain et al., 2019) suggests that this 
isotopic anomaly records a local environmen-
tal response (methane release and oxidation in 
seasonally euxinic bottom waters) to global at-
mospheric changes (including warming) result-
ing from volcanic degassing. Euxinic bottom-
water conditions can be toxic to many fauna, 
particularly benthic mollusks, and have been 
implicated as a kill mechanism in other extinc-
tion events (e.g., Wignall and Twitchett, 1996; 
Zou et al., 2018). Almost all the fauna with 
LOs in interval I are restricted to the sediment-
water interface, consistent with euxinia as a 
kill mechanism, implicating the Deccan Traps 
as the cause of extinction at interval I on Sey-
mour Island. However, during interval II (i.e., 
the KPB), the LOs are dominated by mobile 
demersal organisms (mostly ammonites; Tobin, 
2017), indicating that despite the return of eux-
inic bottom waters, a different kill mechanism 
related to the Chicxulub impact is required 
here, though a low-oxygen environment may 
have affected post-extinction recovery. Nota-
bly, δ13C values recorded during interval II are 
not as low as those during interval I (Fig. 3), 
implying that methanogenesis was present but 
weaker around the KPB. Warming in interval II 
was similar to post-impact warming following 
the KPB observed in the Northern Hemisphere 
(MacLeod et al., 2018), suggesting that this 
signal is global.

CONCLUSION
The periods of warming and seasonal eux-

inia we observe in intervals I and II may have 
been phenomena limited to Seymour Island, but 
it is possible that they are the local expression 
of global events that are only recorded at this 
location due to the high stratigraphic resolu-
tion. Interval I in particular may be a unique 
polar response to Deccan Traps eruptions that is 
not present at lower latitudes. Our isotopic evi-
dence suggests it is likely that both the Deccan 
Traps and the Chicxulub impact contributed to 
the overall faunal turnover associated with the 
KPB on Seymour Island.
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